ActualitéBusinessTech

USA: la reconnaissance faciale commet toujours trop d’erreurs sur les personnes « non blanches »

AFP

Pour découvrir l’actualité de la FrenchTech, et les infos à ne pas manquer directement dans votre boite mail à 15h tous les jours, cliquez ici

Les systèmes de reconnaissance faciale ne sont pas toujours fiables, surtout quand il s’agit de personnes non blanches, d’après un rapport du gouvernement américain publié jeudi, qui renforce les doutes autour du déploiement de cette technologie d’intelligence artificielle. La reconnaissance faciale identifie à tort les personnes asiatiques ou noires 100 fois plus souvent que les personnes blanches, selon cette étude qui a analysé des dizaines d’algorithmes.

Les chercheurs du National Institute of Standards and Technology (NIST), un centre affilié au gouvernement, ont aussi repéré deux algorithmes qui attribuaient le mauvais sexe à des femmes noires dans 35% des cas. La reconnaissance faciale est déjà largement utilisée par les autorités, les forces de l’ordre, les aéroports, les banques, les commerces et les écoles. Elle sert aussi à déverrouiller certains smartphones.

De nombreux défenseurs des droits humains et des chercheurs tentent de freiner ce déploiement. Ils estiment que les algorithmes commettent trop d’erreurs, que des personnes innocentes pourraient se retrouver en prison ou encore que des bases de données risquent d’être piratées et utilisées par des criminels.

Une technologie pas encore au point

Les algorithmes développés aux Etats-Unis avaient des taux d’erreur plus élevés pour les Asiatiques, les Afro-Américains et les Amérindiens, d’après l’étude, tandis que d’autres conçus dans des pays asiatiques parvenaient à identifier aussi bien les visages asiatiques que blancs. « C’est encourageant car cela montre que l’utilisation d’une base de données plus diverse permet d’arriver à de meilleurs résultats», a déclaré Patrick Grother, le directeur de recherche.

Mais pour l’ONG American Civil Liberties Union (ACLU), cette étude prouve avant tout que la technologie n’est pas au point et ne devrait pas être installée. « Même les scientifiques du gouvernement confirment que cette technologie de surveillance est défectueuse et biaisée», a réagi Jay Stanley, un analyste de ACLU.

« Une mauvaise identification peut faire rater un vol, entraîner des interrogations sans fin, un placement sur des listes de personnes à surveiller, des tensions avec des agents de police, des arrestations sans fondement ou pire». « Mais surtout, que la technologie soit fiable ou pas, elle permet de mettre en place une surveillance indécelable et omniprésente à une échelle sans commune mesure», a-t-il ajouté.

Bouton retour en haut de la page
USA: la reconnaissance faciale commet toujours trop d’erreurs sur les personnes « non blanches »
[Silicon Carne] Faire grandir la startup economy
[Série A] RH : Club Employés lève 7 millions d’euros auprès de MAIF Avenir
[Seed] Rodeeo lève 400 000 euros pour son app de location de véhicules
BeautyTech: le géant britannique Treatwell rachète la startup française Wavy
Facebook, Amazon, Uber, Twitter… Pourquoi la Tech américaine recrute moins qu’avant ?
[Nominations] Similarweb, Serena, Ogury, LinkCy… les nominations de la semaine
Ads Blocker Image Powered by Code Help Pro

Votre adblocker bloque votre acces a FrenchWeb.Fr



Depuis 14 ans, FrenchWeb vous propose chaque jour des contenus sur la FrenchTech. Nous diffusons rarement des publicités et ne collectons pas la moindre information sans votre consentement.

Les adblockers empechent votre acces a FrenchWeb. Pour y acceder, nous vous recommandons de nous ajouter a votre liste de sites autorisés.

Merci et bon surf!

Richard Menneveux, fondateur de FrenchWeb.fr et CEO de DECODE.Media